Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure

 

October 12, 2016

By Shengfan Wu, Sihua Li, Qi Sun, Chenchao Huang & Man-Keung Fung

Appearing below is the introduction to an article recently published by the international Journal Nature.

Since C.W Tang demonstrated the first organic light-emitting diodes (OLEDs) based on a double-layer structure of organic materials in 1987, flat-panel displays and lighting applications based on OLED technology have grown dramatically because of their attractive features such as simple fabrication process, ultra-thin structure, light weight and flexibility. It was also found that phosphorescent emissive materials can harvest both singlet and triplet excitons and therefore an internal quantum efficiency of 100% can be obtained in OLEDs. In particular, white-emitting OLEDs are known to be an ideal light source without “blue” hazard, which not only function as a backlight for OLED display and an area light source for decorative and general lightings, but can also be applied as lighting in galleries, hospitals and museums because OLED has no ultraviolet emission.

Currently, one of the major challenges for OLED commercialization is its cost, in which organic materials constitute approximately 20% of the total cost in a panel. One way to reduce the manufacturing cost is to simplify the fabrication process. It is common that in order to achieve a desirable OLED performance, a host-dopant system is adopted. It is therefore crucial to select a host whose energy level aligns well with the dopants resulting in an efficient energy transfer. However, in reality there are few host materials which can match red and blue emitters at the same time. As a consequence, the device structure of OLED is rather complicated, typically consisting of 2 to 3 host-dopant systems. This not only leads to an increase in material cost and device processing time, but also makes it difficult to control dopant concentration accurately. As such, a number of studies have been reported with simplified device structures. Wang et al. fabricated high-efficiency and good colour-stability white OLEDs by using a single host. Sun et al reduced the number of organic layers by removing the interlayer between the fluorescent and phosphorescent materials in hybrid white OLEDs.

Recently, OLEDs with dopant-free and ultrathin emissive layers (UEMLs) have aroused much attention. Chen et al replaced conventional host-dopant systems with non-doped ultrathin bluish-green and red dyes to achieve high-efficiency white OLEDs. Tan et al adopted the UEML approach to fabricate white OLEDs with an efficiency of 23.4cd/A and 17.0lm/W. Zhao et al reported a dopant-free hybrid white OLEDs with ultrathin fluorescent blue and phosphorescent green and red emitters. The device has a current efficiency of 23.2cd/A at a luminance of 1,000cd/m2. The devices based on UEMLs have numerous merits compared with conventional host-guest systems. First, it is not necessary to consider energy level alignment between the hosts and dopants. Second, the dopant-free devices based on UEMLs should have a good colour reproducibility. Third, the UEML approach may be able to save at least 70% of material cost, assuming 10 vol. % of expensive phosphorescent emitters doped in 10nm thick hosts are replaced with UEMLs with a thickness of only 0.3nm. In most of their work, interlayers or spacers were placed in between the UEMLs, which were used passively to tune the colour balance and maximize the device efficiency. Nevertheless, the interlayers would introduce new interfaces which may cause a mismatch of energy level with neighbouring UEMLs. The additional layers will also enhance the complexity of the devices.

In this paper, we first discuss high-efficiency red, green and blue-emitting OLEDs based on phosphorescent UEMLs, the efficiencies of which are comparable or even better than those fabricated using conventional host-guest systems. Simple and high-efficiency white OLEDs were also fabricated using phosphorescent UEMLs consisting of red, green and blue emitters as well as orange and blue emitting materials, without any interlayer. The colour balance was actively tuned by the thickness of the UEMLs in a much simpler and more controllable way. Therefore, UEMLs with spacer-free structures have a great potential in achieving power-efficient white OLEDs.

Read the full document: http://www.nature.com/articles/srep25821.

 

Related Articles


Changing Scene

  • Contact Delage Announces New Partnership with Zilux

    Contact Delage: New Representation Agreement – Zilux

    Contact Delage is pleased to announce a new partnership with Zilux for the representation of their products in the regions of Montreal, Laval, Estrie, Lanaudière, Laurentides, and Montérégie. Specializing in the design of aluminum lighting and urban furniture, Zilux, a Quebec-based manufacturer, combines innovation and durability to enhance your outdoor design projects. Their expertise in… Read More…

  • Mac’s II Agencies Announces Jamie Capell as the New Sales Manager for Lighting Specification

    Expanding Expertise: Mac’s II Agencies Strengthens Lighting Division

    Mac’s II Agencies is pleased to announce the expansion of its lighting division with the addition of Jamie Capell as the Sales Manager for Lighting Specification. Jamie brings 25 years of experience in the lighting and electrical industry, most notably serving as the Director of Sales for a local lighting agency in British Columbia. With… Read More…


Design

  • Light ARchitect Is Revolutionizing Lighting Design for Architects & Designers

    Light ARchitect Is Revolutionizing Lighting Design for Architects & Designers

    Traditionally, lighting design could be a tedious process, often involving physical mockups, time-consuming calculations, and static renderings using multiple software tools. With advancing technology, these traditional methods are giving way to more sophisticated tools that enhance precision, speed, and visualization. On the downside, many of the new tools are not particularly intuitive and the learning… Read More…

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…


New Products

  • Magic Lite: New 5-Channel High-Performance LED Amplifier

    Magic Lite: New 5-Channel High-Performance LED Amplifier

    Designed for professional-grade LED systems, the 5-Channel High-Performance Amplifier delivers precision, scalability, and reliability. Using advanced MOSFET technology and high-speed 10Mbps optical couplers, this amplifier ensures robust power output and flawless signal transmission across large-scale, synchronized LED applications. Whether expanding capacity for PWM controllers or enhancing system stability, this amplifier simplifies complex lighting designs while… Read More…

  • Eureka: Lattice – 3D Printed Ceiling Suspended Fixture

    Eureka: Lattice – 3D Printed Ceiling Suspended Fixture

    Lattice is a one-of-a-kind 3D metal printed fixture. Layer upon layer of intricately braided aluminum branches meld into one of three comprehensive shapes. The result is a stunning glowing light fixture that will add a luxurious feel to ambient environments. EXCLUSIVELY AVAILABLE ON DEMAND. Read More…