Light Replaces the Needle

Lighting Tech

 

Empa and the University Hospital Zurich have joined forces to develop a sensor that gauges blood sugar through skin contact. And best of all: No blood samples are necessary, not even to calibrate the sensor. “Glucolight” is initially to be used in premature babies to avoid hypoglycemia and subsequent brain damage.

One in 12 children are born prematurely in Switzerland. If hypoglycemia develops in these premature babies and persists for over an hour, it can affect brain development. In order to prevent this, the babies’ blood sugar levels need to be measured at regular intervals, which until now inevitably meant taking blood samples. Drawing blood regularly from the sensitive little ones for hours on end, however, is impossible as the blood loss and stress would be too great. In a project funded by the Swiss National Science Foundation (SNSF), Empa and the University Hospital Zurich thus teamed up to develop the sensor “Glucolight,” which gauges the blood sugar level through the skin without taking any blood. Although skin sensors already exist, they have to be calibrated before use, which means that the skin’s permeability value needs to be known. In order to establish this, the blood sugar value has to be determined via a blood sample and the glucose concentration on the skin measured. Based on these readings, the permeability can then be calculated and the sensor calibrated.  

Photo:  Credit: Empa 

A different method to previous sensors

Glucolight spares the premature babies blood samples and enables the blood sugar level to be monitored permanently thanks to the sensor’s novel measuring technology, which comprises several parts: 

• amicrodialysis measuring head, which was developed at the University Hospital Zurich, with a “smart” membrane developed at Empa

• light sources

• a pump

• a microfluidics chip with a fluorometer, also developed at the University Hospital Zurich

The smart Empa membrane contains special dye molecules, known as spiropyrans. If UV light is beamed onto these spiropyran molecules, they alter their chemical structure and become charged (polar). When irradiated with visible light, they revert to their original, neutral structure. As a result, the membrane “opens” if irradiated with UV light and glucose molecules diffuse relatively easily through the membrane from the skin. If irradiated with visible light, considerably fewer glucose molecules pass through the membrane.  

The measurement involves sticking the measuring head, which is around three centimeters in size, to the baby’s skin and irradiating it with visible light; some glucose molecules diffuse through the membrane from the skin. On the other side of the membrane, the glucose is mixed with a fluid and pumped through the microfluidics chip, while enzymes are added to trigger a reaction. During the reaction, a fluorescence appears, which the fluorometer measures, and the computer uses the reading to calculate the glucose concentration. The process is then repeated with UV light. The computer then uses these two different readings to calculate the premature baby’s blood sugar level.  

Research with and on Glucolight continues

The researchers filed a patent application for Glucolight in mid-2014 and the first clinical studies are scheduled at the University Hospital Zurich for 2015. However, it could be years before the use of Glucolight becomes standard. Empa and the University Hospital Zurich are currently in negotiations with partners for the industrial production of the sensor. For the future, the researchers also envisage the use of Glucolight in other fields, such as diabetes. 

 

Related Articles


Changing Scene

  • CSC LED Announces the Appointment of Patrick Ndlovu as Branch Manager (AB)

    CSC LED is happy to announce that Patrick Ndlovu has joined their growing team as Branch Manager in Calgary, Alberta. With extensive experience as a journeyman electrician and a strong background in sales, Patrick brings together technical expertise and a deep understanding of market dynamics. His practical experience in the field, combined with his sales… Read More…

  • Maxlite Expands c-Max Network Partners Ecosystem With Casambi Technologies

    MaxLite is pleased to announce the recent expansion of its c-Max Network Partners ecosystem with the addition of Casambi Technologies, a provider of wireless lighting control systems. This strategic partnership further enhances MaxLite’s c-Max Lighting Controls platform, offering customers an even wider range of advanced wireless control options. The collaboration with Casambi strengthens MaxLite’s commitment… Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    November 22, 2024 RENO Lighting is proud to announce the launch of the AIM Series Architectural Indirect Curved Panel. This innovative luminaire combines sleek design with advanced technology to deliver superior lighting performance for modern architectural spaces. The AIM Series pays homage to traditional edge-lit flat panels, featuring a slim profile ideal for low plenum… Read More…

  • RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    November 22, 2024 RENO Lighting is proud to announce the launch of its new PIR (Passive Infrared) Sensor (R74004), designed to enhance lighting control on LED fixtures such as high bays and vapor tight fixtures with an impressive 50-foot detection range that is designed for installation heights of up to 50ft. This fixture-mounted sensor is the… Read More…