C. Webster Marsh Examines the Paradigm Shift in Controls

LDS 15 CS LCA education 400

September 7, 2022

By C. Webster Marsh, Penumbra Controls

In a recent episode of Get a Grip On Lighting Conversation Series, a podcast series that I record with my co-host Ron Kuzmar, we interviewed Norman Russell from NV5. The conversation focused on how lighting controls design has changed and when this change transpired. Norman suggested that a change to lighting controls design happened when control systems started communicating with luminaires via alternative signals, such as with DMX512 or 0-10V systems, in lieu of phase dimming. This change facilitated more advanced controls solutions, which is altering the landscape of lighting control systems. Many designers, manufacturers, and contractors are resisting this change, however, and it appears as though we are headed towards a third paradigm shift that will sustain those who adapt and eliminate those who don’t.

At the outset, electric lighting controls began with a simple axiom: lighting can be On or Off. This was often via a light switch or a relay that would control groups of luminaires that shared the same circuit. Power to the luminaires was cut off by physically severing the circuit feeding the luminaires. While this principle doesn’t address the details for how the lighting is On or Off, it was common to assume that control groups (zones) shared a power circuit.

Eventually, a new axiom was introduced with the innovation of dimming controls. No longer was it just On or Off, but it was also: lighting can be brighter or dimmer. This new truism still relied on the same principles of the first axiom, in that zones shared the same circuit and were switched and dimmed together, and it was still a very expensive option to provide individual control of each luminaire. Like the first axiom, this doesn’t say how luminaires are dimmed, just that they can be. At the outset of this new principle, phase dimming was the most popular option available, which used the power feeding the luminaires to also dim them.

Through our conversation with Norman, it became clear that we are now in another moment of change with a new axiom: lighting can be static or dynamic. Traditional dimming systems would only be able to adjust the brightness of a static white luminaire, but luminaires today are no longer just static white. Luminaires can be color changing, tunable white, or dim to warm. Whether it’s a trend or not, dynamic color control capabilities are currently in a phase of growth and their controls needs are much more advanced than their predecessors.

Dynamic lighting was not possible when luminaires were shackled to each other via a shared control circuit or dependent on phase dimming, but nowadays luminaires don’t have to be controlled synonymously with the circuit or dimmed with their own power source. Luminaires can now be circuit agnostic, which means that luminaires can be controlled individually even when they share the same circuit, and they can have multiple attributes, which means that they have different independently controlled colors or functions. Because of this new relationship with circuits, light fixtures can be used for unrelated applications such as collecting and monitoring building data.

These new axioms throw out a lot of the traditional assumptions about lighting controls and introduce a whole new paradigm for the industry to consider. This new paradigm has a great amount of friction with those who are resistant to change and my heart goes out to those who want to keep the status quo. But many people have made the argument that those who rigidly hold on to the “old ways” will fade away and be replaced by those who adapt, because the benefits of the new technology far outweigh the time and effort in learning how to specify and use them.

Smartphones were once a rarity that people refused to adopt because they were new, unfamiliar, and incredibly expensive, but now it is hard to find people, in the modern world, without a smartphone. Looking through this lens, we can see the parallels in our own industry. NLCs are the smartphones of lighting design, but we are currently still discovering how they fit into our lives. It’s clear that they can improve people’s lives, for instance: touchscreens can dynamically change so that we can interact with a building in real-time (and not just with its lighting), sensors can be used with lighting to provide a comfortable environment while ensuring optimal building and energy use, intelligent lighting controls give us the ability to pick whatever color of light we want, and we can check the status of our lighting from anywhere including our smartphones. These features have never been possible before and it is unlikely that they will disappear, rather they will probably change and become more complex to meet the demands of a growing high-tech world.

Lighting controls design work is not the same as it was and so the question I am asking you is: will you resist the change or adapt to new technology?

Adapting to this new perspective won’t be easy, in fact it will take a lot of effort. Modern controls are more complex than they have ever been but, much like how people accommodated going from switching to dimming, the benefits outweigh the costs. Early versions of dimmers were marketed as energy-saving devices, but modern lighting design relies heavily on the ability to dim luminaires and this change took time, effort, and a rethinking of how to work with lighting. Similarly, changing our mindset to accommodate dynamic lighting, instead of just meeting “code minimum,” will also take time and effort, but arguably it will be worth it and will improve the success of future lighting designs.

Thanks to new controls systems we can think bigger when it comes to lighting design, but big ideas can’t emerge if we adhere to the comfort zone where complex control systems are thought of as an “add-on” feature. I implore you, for the betterment of the industry, start thinking about lighting with these new axioms that lighting can be dynamic and circuit agnostic.

Source

Related Articles


Changing Scene

  • Leviton Achieves 29% Decrease in Overall GHG Emissions from 2021 to 2023

    Leviton recently announced that it achieved a 29% drop in overall greenhouse gas (GHG) emissions from the 2021 baseline year, a major step towards the goal of becoming carbon neutral company-wide by the year 2030 with their CN2030 program. Through on-site renewable energy generation, accelerated energy efficiency efforts, moving to renewable and clean energy providers,… Read More…

  • LEDVANCE Canada Welcomes Gary Repko as Sr. Sales Representative in Central Region

    Recently, LEDVANCE Canada was delighted to welcome Gary Repko as its Sr. Sales Representative for the central region of Canada. Linda Conejo, a Regional Sales Manager for LEDVANCE Canada, stated, “Gary has 12+ years industry experience and brings a wealth of knowledge having worked with engineers, contractors and distributors. We are excited that he has… Read More…


Design

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…

  • Lumentruss Case Study: The Honeyrose Hotel’s Beautiful Redesign

    Lumentruss Case Study: The Honeyrose Hotel’s Beautiful Redesign

    May 30, 2024 A unique example of intimate spaces created using Lumentruss products at the Honeyrose Hotel. HONEYROSE Hotel, Montreal, a Tribute Portfolio Hotel. The beautifully inspired Art Deco boutique hotel located in the heart of Montreal is an exemplary demonstration of integrating layers of light into the architectural design to bring the architecture to… Read More…


New Products

  • WaveLinx LITE Node from Cooper Lighting Solutions

    WaveLinx LITE Node from Cooper Lighting Solutions

    The WaveLinx LITE Node (OEM-WLN) is a wireless to 0-10V control module designed to be integrated into the luminaire. The LITE Node offers two continuous 0-10V output channels that can be used to control dim-to-off 0-10V LED drivers with auxiliary power. The device has a built-in 802.15.1 radio (Bluetooth) that is used to communicate with other WaveLinx… Read More…

  • Peerless Electric: Peerlux Series ECR-G Luminaire

    Peerless Electric: Peerlux Series ECR-G Luminaire

    Introducing Peerless Electric’s ECR-G luminaire, part of the Peerlux Series, a germicidal luminaire for suspended mounting with aircraft cables. Designed to help clean the air of bacteria, fungi, their spores and inactivating viruses by destroying their ability to replicate. A stylish linear fixture that provides indirect UVc disinfection. Read More…