A Short History of Safety Norms For LEDs

November 8, 2016 

By Fausto Martin

What came first: the chicken or the egg? In technical files the answer is simple: first comes the product, then the standard. In 1993, when Nichia introduced the blue LED (based on GaN), the issue of photo biological safety was taken into consideration. The International Electrotechnical Commission (IEC) decided to include LEDs in the laser product category and related norms (IEC 60825). This decision was based on the use of infrared LED in the fibre communication system due to its very narrow band.

A few years later — 1996 — IESNA published ANSI/IESNA RP27.1, “Photobiological safety for lamps and lamp systems – general requirements,” providing some norms for sources other than laser.

In 2002, the International Commission on Illumination adopted the main part of ANSI/IESNA RP27.1 as the basis for a new norm S009/E-2002: “Photobiological safety of lamps and lamp systems”; four years later the fast improvement and diffusion of LEDs in other fields led the IEC to draft the 60825, a very severe Norm for “general purpose” LED. From now on, LEDs are no longer considered as a LASER equivalent source.

Around 2006 IEC adopted the guidelines specified in S009/E-2002 jointly with IEC 62471:2006 “Photobiological safety of lamps and lamp systems;” two years later the European edition of EN 62471 was published. It provides guidance for evaluating the photobiological safety of lamps and lamp systems, including luminaires. It specifies the exposure limits, reference measurement technique and classification scheme for evaluating and controlling photobiological hazards from all electrically powered incoherent broadband sources of optical radiation, including LEDs but excluding lasers, in the wavelength range from 200 nm through 3000 nm. In particular, some limit values are specified based on six risk categories for human skin and eyes up to 8 hours of exposition, considered as a standard working time.

Photobiological safety of lamps: EN 62471

Light radiation can damage the skin and eyes. Any light source can cause damage, not just LEDs. European legislation obliges manufacturers to perform laboratory tests and writing on the lamp the risk category (if present). More, the emission limits shall not be exceeded. Test to run, risk classes and emission limits are defined in EN 62471. The tests and emission limits are not easy to understand because they require specific technical knowledge and only experts and equipped laboratories can assess the lamp hazards. What we can do is to understand the hazard of the various classes and if there are “risk free” lamps.

The potential damage from the light varies with the radiation wavelength and the quantity received. The quantity is given by the power for the exposure time. Intense radiation requires less time to cause damage at a lesser intensity.

Here’s an example to clarify the context: you can get sunburned if exposed for one hour on July 21 at noon, whereas you would require eight hours of exposure in March.

 

The radiance and irradiance measurements are carried out at the distance at which it produces an illuminance of 500 lux and to not less than 200 mm in the case of general lighting devices and 200 mm for all others.

EN 62471 defines the following the exposure limits for the different groups…

Lamps belonging to Group 3 cannot be used for general lighting.

According to the typical spectral emission, just a few lamps may be dangerous:

In these cases, the lamps must bear on the packaging the risk group.

With regard to blue light, whereas the values stated above it is possible to define a value of the illumination (at the level of the eyes) as a function of the colour temperature (CCT) of the lamp, under which the exposure is equal to or less than the group 1:

In the chart above, a higher colour temperature (CCT) is related to a higher power in the blue wavelength. In other words, the risk can be simply checked by a measurement of illuminance with a cheap and easy to use instrument: a lux meter.

Fausto Martin is an electrical engineer in Italy and a visiting professor at Madrid University (Spain).

Related Articles


Changing Scene

  • Contact Delage Announces New Partnership with Zilux

    Contact Delage: New Representation Agreement – Zilux

    Contact Delage is pleased to announce a new partnership with Zilux for the representation of their products in the regions of Montreal, Laval, Estrie, Lanaudière, Laurentides, and Montérégie. Specializing in the design of aluminum lighting and urban furniture, Zilux, a Quebec-based manufacturer, combines innovation and durability to enhance your outdoor design projects. Their expertise in… Read More…

  • Mac’s II Agencies Announces Jamie Capell as the New Sales Manager for Lighting Specification

    Expanding Expertise: Mac’s II Agencies Strengthens Lighting Division

    Mac’s II Agencies is pleased to announce the expansion of its lighting division with the addition of Jamie Capell as the Sales Manager for Lighting Specification. Jamie brings 25 years of experience in the lighting and electrical industry, most notably serving as the Director of Sales for a local lighting agency in British Columbia. With… Read More…


Design

  • Light ARchitect Is Revolutionizing Lighting Design for Architects & Designers

    Light ARchitect Is Revolutionizing Lighting Design for Architects & Designers

    Traditionally, lighting design could be a tedious process, often involving physical mockups, time-consuming calculations, and static renderings using multiple software tools. With advancing technology, these traditional methods are giving way to more sophisticated tools that enhance precision, speed, and visualization. On the downside, many of the new tools are not particularly intuitive and the learning… Read More…

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…


New Products

  • Magic Lite: New 5-Channel High-Performance LED Amplifier

    Magic Lite: New 5-Channel High-Performance LED Amplifier

    Designed for professional-grade LED systems, the 5-Channel High-Performance Amplifier delivers precision, scalability, and reliability. Using advanced MOSFET technology and high-speed 10Mbps optical couplers, this amplifier ensures robust power output and flawless signal transmission across large-scale, synchronized LED applications. Whether expanding capacity for PWM controllers or enhancing system stability, this amplifier simplifies complex lighting designs while… Read More…

  • Eureka: Lattice – 3D Printed Ceiling Suspended Fixture

    Eureka: Lattice – 3D Printed Ceiling Suspended Fixture

    Lattice is a one-of-a-kind 3D metal printed fixture. Layer upon layer of intricately braided aluminum branches meld into one of three comprehensive shapes. The result is a stunning glowing light fixture that will add a luxurious feel to ambient environments. EXCLUSIVELY AVAILABLE ON DEMAND. Read More…