AMA Issues Guidance on Harmful Effects of High Intensity Street Lighting

High Intensity Street lighting

 

 

 

July 12 2016

Strong arguments exist for overhauling LED roadway lighting systems, but conversions to improper LED technology can have adverse consequences. In response, physicians at a recent annual meeting of the American Medical Association (AMA) today adopted guidance for communities on selecting among LED lighting options to minimize potential harmful human and environmental effects.

Converting conventional street light to energy efficient LED lighting leads to cost and energy savings, and a lower reliance on fossil-based fuels. 

“Despite the energy efficiency benefits, some LED lights are harmful when used as street lighting,” says AMA Board Member Maya A. Babu. “The new AMA guidance encourages proper attention to optimal design and engineering features when converting to LED lighting that minimize detrimental health and environmental effects.”

High-intensity LED lighting designs emit a large amount of blue light that appears white to the naked eye and create worse nighttime glare than conventional lighting. Discomfort and disability from intense, blue-rich LED lighting can decrease visual acuity and safety, resulting in concerns and creating a road hazard.

In addition to its impact on drivers, blue-rich LED streetlights operate at a wavelength that most adversely suppresses melatonin during night. It is estimated that white LED lamps have five times greater impact on circadian sleep rhythms than conventional street lamps. Recent large surveys found that brighter residential nighttime lighting is associated with reduced sleep times, dissatisfaction with sleep quality, excessive sleepiness, impaired daytime functioning and obesity.

The detrimental effects of high-intensity LED lighting are not limited to humans. Excessive outdoor lighting disrupts many species that need a dark environment. For instance, poorly designed LED lighting disorients some bird, insect, turtle and fish species, and U.S. national parks have adopted optimal lighting designs and practices that minimize the effects of light pollution on the environment.

Recognizing the detrimental effects of poorly-designed, high-intensity LED lighting, the AMA encourages communities to minimize and control blue-rich environmental lighting by using the lowest emission of blue light possible to reduce glare. The AMA recommends an intensity threshold for optimal LED lighting that minimizes blue-rich light. The AMA also recommends all LED lighting should be properly shielded to minimize glare and detrimental human health and environmental effects, and consideration should be given to utilize the ability of LED lighting to be dimmed for off-peak time periods.

The guidance adopted by grassroots physicians who comprise the AMA’s policy-making body strengthens the AMA’s policy stand against light pollution and public awareness of the adverse health and environmental effects of pervasive nighttime lighting.

Related Articles


Changing Scene

  • CSC LED Announces the Appointment of Patrick Ndlovu as Branch Manager (AB)

    CSC LED is happy to announce that Patrick Ndlovu has joined their growing team as Branch Manager in Calgary, Alberta. With extensive experience as a journeyman electrician and a strong background in sales, Patrick brings together technical expertise and a deep understanding of market dynamics. His practical experience in the field, combined with his sales… Read More…

  • Maxlite Expands c-Max Network Partners Ecosystem With Casambi Technologies

    MaxLite is pleased to announce the recent expansion of its c-Max Network Partners ecosystem with the addition of Casambi Technologies, a provider of wireless lighting control systems. This strategic partnership further enhances MaxLite’s c-Max Lighting Controls platform, offering customers an even wider range of advanced wireless control options. The collaboration with Casambi strengthens MaxLite’s commitment… Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    November 22, 2024 RENO Lighting is proud to announce the launch of the AIM Series Architectural Indirect Curved Panel. This innovative luminaire combines sleek design with advanced technology to deliver superior lighting performance for modern architectural spaces. The AIM Series pays homage to traditional edge-lit flat panels, featuring a slim profile ideal for low plenum… Read More…

  • RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    November 22, 2024 RENO Lighting is proud to announce the launch of its new PIR (Passive Infrared) Sensor (R74004), designed to enhance lighting control on LED fixtures such as high bays and vapor tight fixtures with an impressive 50-foot detection range that is designed for installation heights of up to 50ft. This fixture-mounted sensor is the… Read More…