New Phosphor Promises Cheaper and More Efficient Next-Generation LED Lighting

Fluorescent Lamp Spectrum

 

 

August 08 2016

Researchers from KU Leuven (Belgium), the University of Strasbourg, and CNRS have discovered a new phosphor that could make next-generation fluorescent and LED lighting even cheaper and more efficient. The team used highly luminescent clusters of silver atoms and the porous framework of minerals known as zeolites.

Silver clusters consist of just a few silver atoms and have remarkable optical properties. However, current applications are limited, because the clusters tend to aggregate into larger particles, thus losing the interesting optical properties. 

Professor Hofkens and his team from the Molecular Imaging and Photonics Unit have now found a way to keep the silver clusters apart by inserting them into the porous framework of zeolites. The result: stable silver clusters that maintain their unique optical properties.

Zeolites are minerals that are either found in nature or produced synthetically on an industrial scale. The minerals have a very rigid and well-defined framework of small molecular-sized channels, pores, and cages. They’re commonly used in domestic and industrial applications such as washing detergent and water treatment.

Professor Maarten Roeffaers from the Centre for Surface Chemistry and Catalysis explains: “Zeolites contain sodium or potassium ions. We used ion exchange to replace these ions with silver ions. To obtain the clusters we wanted, we heated up the zeolites with the silver ions, so that the silver ions self-assembled into clusters.”

In collaboration with Professor Peter Lievens’s Laboratory for Solid State Physics and Magnetism, the researchers examined the properties of these heat-treated ‘silver zeolites’. Using advanced techniques, they found that the structural, electronic, and optical properties of the zeolites were strongly influenced by the silver clusters. That’s how they discovered that the shape of the silver clusters is essential to obtain the right fluorescence properties.

Professor Johan Hofkens explains: “Clusters of silver atoms can assemble into different shapes, including a line or a pyramid. This pyramid shape is what we need to obtain the best fluorescence properties. Heating up the silver ions in the zeolite framework makes them adopt this shape. Because they are ‘trapped’, as it were, in the cages of the zeolites, they can only form a pyramid with up to four silver atoms. That is exactly the shape and size in which the silver cluster emits the largest amount of fluorescent light, with an efficiency close to 100%.”

These findings have great potential for the development of next-generation fluorescent and LED lighting and for biological imaging. After all, the new phosphors not only emit a large amount of light, they are also cheap to produce.

This study was funded by the European Union: EU FP7-NMP-2012 SACS (Self-Assembly in Confined Space; GA-310651).

Read the study in Nature Materials: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4652.html.

Related Articles


Changing Scene


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    November 22, 2024 RENO Lighting is proud to announce the launch of the AIM Series Architectural Indirect Curved Panel. This innovative luminaire combines sleek design with advanced technology to deliver superior lighting performance for modern architectural spaces. The AIM Series pays homage to traditional edge-lit flat panels, featuring a slim profile ideal for low plenum… Read More…

  • RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    November 22, 2024 RENO Lighting is proud to announce the launch of its new PIR (Passive Infrared) Sensor (R74004), designed to enhance lighting control on LED fixtures such as high bays and vapor tight fixtures with an impressive 50-foot detection range that is designed for installation heights of up to 50ft. This fixture-mounted sensor is the… Read More…