| |

All Blue Light is Not Created Equal, Exposure to the Right Blue is Critical for Optimizing Circadian Rhythms

By PRWEB

Circadian Light Research Center emphasizes healthy circadian lighting key to better health

One of the excuses the lighting industry uses to avoid addressing the harmful effects of blue-enriched LED lights at night is “circadian science is not yet mature.” Now a publication in PNAS from Harvard’s Brigham and Women’s Hospital has resolved one of the last remaining contradictions in the science – what color blue is responsible for the health effects? Start 2023 off in the best light, with details from the Circadian Light Research Center on exposure to the right blue light.

Dr. Martin Moore-Ede, director of the Circadian Light Research Center explains: “Over the past 20 years, exposure to blue-rich light at night, and too little blue-rich light during the day, has been linked to dozens of serious health disorders caused by circadian rhythm disruption, including sleep disorders, depression, obesity, diabetes, cardiovascular disease, and several hormone-sensitive cancers including breast and prostate cancer. But which blue? Royal blue, sky blue, aqua?”

The first studies in 2001 pointed to 460 nm royal blue. But the photobiologists studied people in the dark given short (less than 90 minutes) exposures to monochromatic (single-color) lights.

These early studies hardly represented how people use lights in the real world. To better understand blue light effects, the Circadian Light Research Center team studied people working under normal office lighting. In 2020 they reported the key color that had to be controlled in healthy lighting was 477 nm sky blue, near the 479 nm peak sensitivity of the melanopsin circadian photopigment in the eye. The 460 nm royal blue sensitivity only applied to the dark-adapted eye, but in the normal light-adapted conditions of workplaces and homes, the blue light most essential to control was sky blue, near 480 nm light.

In 2022, the Harvard study confirmed the explanation was correct. During the first hour of light exposure, 460nm royal blue is the key circadian clock resetting signal, but after that, approximately 480nm sky-blue light is the circadian time cue. They resolved the contradiction by studying 99 dark-adapted human volunteers receiving 6.5 hours of monochromatic light exposures instead of the previously studied 90 minutes.

The reason for the difference between short versus long light exposures is that the cones in the retina are triggered when people first see light. Still, that effect fades away in the first hour, leaving the melanopsin-containing retinal ganglion cells in the retina, driving the sustained response to blue light as long as the lights remain on.

The key to human health is for the lighting industry to remove all 438-493 nm blue light from every LED light used after sunset but add plenty of 480 nm blue light to every fixture and light bulb used during the daytime hours.

If not replaced with circadian lighting, people only prolong the ill-health caused by the indiscriminate use of blue-enriched lights.

Circadian Blue Light is the narrow band of blue light (between 438-493nm) that synchronizes our circadian rhythms during the day and disrupts them at night

Circadian Light Research Center
Dr. Martin Moore-Ede, a former professor at Harvard Medical School, and his research team built this medical research center to identify and develop optimal health circadian lighting. With funding from the National Institutes of Health and other supporters, they designed and operated a light-controlled medical research center with a fully spectrally-controlled workplace and residential lighting to study human volunteers living and working at all hours around the clock.

Martin Moore-Ede M.D., Ph.D.
For over 40 years, Dr. Moore-Ede has been a leading world expert on circadian clocks and the health problems caused by electric light at night. As a professor at Harvard Medical School (1975 – 1998), he led the team that located the suprachiasmatic nucleus, the biological clock in the human brain that controls the timing of sleep and wake. He pioneered research on how circadian clocks regulate the timing of body functions. Since 2010, he has led the Circadian Lighting Research Center team that identified the key blue signal that synchronizes circadian clocks and developed patented LED lights, which provide circadian-optimized light across day and night based on comprehensive medical research. The effectiveness of these circadian-modulated lights in improving health and well-being has been validated by installing them in the 24-hour operations of Fortune 500 companies and hospitals. He has published over 180 scientific articles and authored ten books, including the best-selling books, The Clocks that Time Us, and The Twenty-Four Hour Society. His forthcoming book is The Light Doctor: Why You Must Change Your Lights Now to Protect Your Health

For more info:

https://www.prweb.com/releases/all_blue_light_is_not_created_equal_exposure_to_the_right_blue_is_critical_for_optimizing_circadian_rhythms/prweb19093414.htm

Related Articles


Changing Scene

  • CSC LED Announces the Appointment of Patrick Ndlovu as Branch Manager (AB)

    CSC LED is happy to announce that Patrick Ndlovu has joined their growing team as Branch Manager in Calgary, Alberta. With extensive experience as a journeyman electrician and a strong background in sales, Patrick brings together technical expertise and a deep understanding of market dynamics. His practical experience in the field, combined with his sales… Read More…

  • Maxlite Expands c-Max Network Partners Ecosystem With Casambi Technologies

    MaxLite is pleased to announce the recent expansion of its c-Max Network Partners ecosystem with the addition of Casambi Technologies, a provider of wireless lighting control systems. This strategic partnership further enhances MaxLite’s c-Max Lighting Controls platform, offering customers an even wider range of advanced wireless control options. The collaboration with Casambi strengthens MaxLite’s commitment… Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • SATCO|NUVO: SATCO-Escent Decorative Lamps

    SATCO|NUVO: SATCO-Escent Decorative Lamps

    Discover the elegance of “Satco-Escent” Satin Spun light bulbs, which combine the classic charm of incandescent lighting with the advantages of modern LED technology. The exquisite Satin Spun finish evokes the look of a vintage gas flame, while the unique shape of the bulb adds a touch of contemporary style. This family is available in… Read More…

  • SATCO|NUVO: LED HID Replacement Lamps

    SATCO|NUVO: LED HID Replacement Lamps

    Easily upgrade dated HID lamps with energy saving LED bulbs. SATCO’s long lasting HID replacement lamps offer outstanding efficacy in applications where low-maintenance is the goal: streetlights, warehouses, retail, gymnasiums and more. With a variety of lamp shapes and bases available in clear filament or white finish, in color temperatures from warm white to natural… Read More…