New Study Reports to Have Found key to Healthy LED Lighting

LDS CLRC 400

June 22, 2020

Scientists at the Circadian Light Research Center have identified the narrow band of blue light that synchronizes our circadian rhythms during the day and disrupts them at night. The study, which has major implications for how lights will be engineered to optimize human health, was published online in the Journal of Biological Rhythms on June 16th.

Blue light exposure at night is a well-established public health hazard. It suppresses melatonin, causes circadian disruption, and is linked to an increased risk of sleep disorders, obesity, diabetes, and breast and prostate cancer. But what is the precise band of blue light that disrupt our circadian rhythms at night?

“Our goal was to define the exact wavelengths of light that trigger the human circadian system in real-world lighting conditions” said Dr. Martin Moore-Ede, a former professor at Harvard Medical School and CEO at Circadian ZircLight. “We found the critical blue light signal falls between 438-493nm with a peak at 477nm, which we are calling “Circadian Blue.” This is the missing key to managing the health risks of light at night.”

The Circadian Light Research Center team used an interesting feature of white light to tease out the circadian-sensitive wavelengths. White lights can be built from a wide variety of rainbow color spectral combinations. They recruited 34 male and female study subjects, who were exposed on each test night to a different LED or fluorescent white light spectra for 12-hours. Throughout each night, melatonin levels were measured.

“We found melatonin suppression levels varied widely depending on the light source’s unique spectral characteristics,” said Dr. Anneke Heitman, a study co-author. “This data enabled us to isolate the impact of individual wavelengths of light and determine the color of Circadian Blue.”

“Previous research into the spectral sensitivity of the circadian clock was done in dark-adapted conditions with short exposures to monochromatic (single color) lights. However, at home and at work, we spend the vast majority of our time in a light-adapted state, exposed to white polychromatic light,” said Dr. Moore-Ede.  “Our study reflects how we interact with light in the real-world.”

Based on these findings, Circadian ZircLight has built and patented spectrally-engineered day and night Zirc™ LEDs that synchronize circadian rhythms during the day and prevent circadian disruption at night by controlling the Circadian Blue dosage. This work led to the first UL verified LED to emit less than 2% blue light at night.

The lighting world is taking note. In addition to building their own fixtures, Circadian ZircLight has licensed the LED technology to leading lighting companies, such as Acuity Brands, and H.E Williams to meet the growing demand for circadian lighting. And, Circadian ZircLight expects to have light bulbs for the home next year.

Source

Related Articles


Changing Scene

  • Luminis Wins Two 2024 Product Innovation Awards

    Luminis is pleased to announce its Syrios Pro family and Jaki luminaires have each received a 2024 Product Innovation Award from Architectural Products magazine. The PIA program was created to celebrate the ground-breaking products, systems, and materials that help architects achieve new levels of creativity or performance in their design. Each entry is reviewed by… Read More…

  • NEMRA Announces Jeff Bristol as Vice President of the Newly Formed NEMRA Lighting Division

    The National Electrical Manufacturers Representatives Association (NEMRA) is proud to announce the appointment of Jeff Bristol as Vice President of the newly formed NEMRA Lighting Division. Jeff Bristol most recently served as Senior Vice President of Sales & Marketing for MaxLite, where he was responsible for developing and executing sales and marketing strategies across multiple… Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • SATCO|NUVO: Lacey Collection LED Smart Color-Changing Pendants

    SATCO|NUVO: Lacey Collection LED Smart Color-Changing Pendants

    The Lacey LED pendant collection combines sophisticated design with the advanced functionality of STARFISH Smart technology. Featuring beautiful lead free bubble crystal, these fixtures create a stunning interplay of light, texture, and color. Each bubble sparkles with vibrant hues, while traditional white tones, ranging from warm to natural light, offer a more classic lighting option.… Read More…

  • Contact Delage: New Ketra Lighting by Lutron – Make Your Clients Feel the Vibe

    Contact Delage: New Ketra Lighting by Lutron – Make Your Clients Feel the Vibe

    In a world where light plays a central role in architecture and design, Ketra Lighting by Lutron redefines how we illuminate spaces and influence emotions. With its unique approach and advanced capabilities, Ketra Lighting transforms every residential or commercial project into an immersive and personalized experience. Ketra Lighting stands out with its revolutionary technology, where… Read More…