Energy Free Superfast Computing Invented by Scientists Using Light Pulses

May 16, 2019

Superfast data processing using light pulses instead of electricity has been created by scientists. The invention uses magnets to record computer data that consume virtually zero energy, solving the dilemma of how to create faster data processing speeds without the accompanying high energy costs.

Today’s data centre servers consume between 2 to 5% of global electricity consumption, producing heat which in turn requires more power to cool the servers.  

The problem is so acute that Microsoft has even submerged hundreds of its data centre services in the ocean in an effort to keep them cool and cut costs.

Most data are encoded as binary information (0 or 1 respectively) through the orientation of tiny magnets, called spins, in magnetic hard-drives. The magnetic read/write head is used to set or retrieve information using electrical currents which dissipate huge amounts of energy.

Now an international team publishing in Nature www.nature.com/articles/s41586-019-1174-7 has solved the problem by replacing electricity with extremely short pulses of light — the duration of one trillionth of a second — concentrated by special antennas on top of a magnet.

This new method is superfast but so energy efficient that the temperature of the magnet does not increase at all.  

The team includes Dr. Rostislav Mikhaylovskiy, formerly at Radboud University and now Lancaster University, Stefan Schlauderer, Dr. Christoph Lange, and Professor Rupert Huber from Regensburg University, Professor Alexey Kimel from Radboud University, and Professor Anatoly Zvezdin from the Russian Academy of Sciences.

They demonstrated this new method by pulsing a magnet with ultrashort light bursts (the duration of a millionth of a millionth of a second) at frequencies in the far infrared, the so called terahertz spectral range. 

However, even the strongest existing sources of the terahertz light did not provide strong enough pulses to switch the orientation of a magnet to date. 

The breakthrough was achieved by utilizing the efficient interaction mechanism of coupling between spins and terahertz electric field, which was discovered by the same team. 

The scientists then developed and fabricated a very small antenna on top of the magnet to concentrate and thereby enhance the electric field of light. This strongest local electric field was sufficient to navigate the magnetization of the magnet to its new orientation in just one trillionth of a second.

The temperature of the magnet did not increase at all as this process requires energy of only one quantum of the terahertz light — a photon — per spin. 

“The record-low energy loss makes this approach scalable,” says Dr. Mikhaylovskiy. “Future storage devices would also exploit the excellent spatial definition of antenna structures enabling practical magnetic memories with simultaneously maximal energy efficiency and speed.” 

He plans to carry out further research using the new ultrafast laser at Lancaster University together with accelerators at the Cockroft Institute which are able to generate intense pulses of light to allow switching magnets and to determine the practical and fundamental speed and energy limits of magnetic recording.  

Photo source: Brad Baxley (parttowhole.com)

Related Articles


Changing Scene

  • ERALUX Joins Forces With Electra Sales

    Eralux is thrilled to announce its new partnership with Electra Sales, a renowned sales and distribution powerhouse. This collaboration is set to enhance product accessibility and deliver exceptional value to customers in more regions than ever before. The partnership unites Eralux’s commitment to innovation and affordability with Electra Sales’ extensive industry expertise and proven market… Read More…

  • Salex Expands to Ottawa: Lighting Up the Nation’s Capital

    As the New Year begins, Salex is thrilled to announce an exciting milestone: Salex is now operating in Ottawa. This expansion marks the next chapter in Salex’s journey of delivering innovative lighting solutions and exceptional service to the design and architectural communities. Salex is honoured to bring their expertise to the vibrant and growing Ottawa market. Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • Rebelle Lighting: New RTX4 4301 Mini Wall Mount

    Rebelle Lighting: New RTX4 4301 Mini Wall Mount

    The RTx4 family offers multiple wall mounted luminaires to address entry and area lighting around a building perimeter along with a coordinating bollard. The RTx4 4301 can be used over doorways and beside entrances, it is ADA compliant and exudes a soft glow for optimal visual comfort. This luminaire is available in an LED source… Read More…

  • NDR Lighting: Razor SMART RGB + Tunable White Recessed Regressed Downlight

    NDR Lighting: Razor SMART RGB + Tunable White Recessed Regressed Downlight

    The Razor family continues to grow and this time it’s better than ever. The new SMART RGB+CCT Razors offer a recessed LED downlight with the highest quality and light performance featuring all the RGB colors AND white color selectable ranging from 2700K through 6500K, you can achieve over 16 million+ different colors. Offered in a… Read More…