Energy Free Superfast Computing Invented by Scientists Using Light Pulses

May 16, 2019

Superfast data processing using light pulses instead of electricity has been created by scientists. The invention uses magnets to record computer data that consume virtually zero energy, solving the dilemma of how to create faster data processing speeds without the accompanying high energy costs.

Today’s data centre servers consume between 2 to 5% of global electricity consumption, producing heat which in turn requires more power to cool the servers.  

The problem is so acute that Microsoft has even submerged hundreds of its data centre services in the ocean in an effort to keep them cool and cut costs.

Most data are encoded as binary information (0 or 1 respectively) through the orientation of tiny magnets, called spins, in magnetic hard-drives. The magnetic read/write head is used to set or retrieve information using electrical currents which dissipate huge amounts of energy.

Now an international team publishing in Nature www.nature.com/articles/s41586-019-1174-7 has solved the problem by replacing electricity with extremely short pulses of light — the duration of one trillionth of a second — concentrated by special antennas on top of a magnet.

This new method is superfast but so energy efficient that the temperature of the magnet does not increase at all.  

The team includes Dr. Rostislav Mikhaylovskiy, formerly at Radboud University and now Lancaster University, Stefan Schlauderer, Dr. Christoph Lange, and Professor Rupert Huber from Regensburg University, Professor Alexey Kimel from Radboud University, and Professor Anatoly Zvezdin from the Russian Academy of Sciences.

They demonstrated this new method by pulsing a magnet with ultrashort light bursts (the duration of a millionth of a millionth of a second) at frequencies in the far infrared, the so called terahertz spectral range. 

However, even the strongest existing sources of the terahertz light did not provide strong enough pulses to switch the orientation of a magnet to date. 

The breakthrough was achieved by utilizing the efficient interaction mechanism of coupling between spins and terahertz electric field, which was discovered by the same team. 

The scientists then developed and fabricated a very small antenna on top of the magnet to concentrate and thereby enhance the electric field of light. This strongest local electric field was sufficient to navigate the magnetization of the magnet to its new orientation in just one trillionth of a second.

The temperature of the magnet did not increase at all as this process requires energy of only one quantum of the terahertz light — a photon — per spin. 

“The record-low energy loss makes this approach scalable,” says Dr. Mikhaylovskiy. “Future storage devices would also exploit the excellent spatial definition of antenna structures enabling practical magnetic memories with simultaneously maximal energy efficiency and speed.” 

He plans to carry out further research using the new ultrafast laser at Lancaster University together with accelerators at the Cockroft Institute which are able to generate intense pulses of light to allow switching magnets and to determine the practical and fundamental speed and energy limits of magnetic recording.  

Photo source: Brad Baxley (parttowhole.com)

Related Articles


Changing Scene

  • SLS Group Industries Announces 3 New Ownership Roles

    SLS Group Industries Announces 3 New Ownership Roles

    In a bold move that underscores the power of experience and dedication, three long-term employees: Ryan Cattermole, Douglas McDonald and Nitin Naidu, have ascended to ownership roles at SLS Group Industries Inc., a major lighting sales agency operating in British Columbia, Canada. This transition marks a significant shift in the agency’s leadership dynamics, emphasizing a… Read More…

  • Leviton| Viscor Announces Julian Verrall as New Director of Engineering & Product Management

    Leviton|Viscor Announces Julian Verrall as New Director of Engineering & Product Management

    Leviton|Viscor is pleased to announce the appointment of Julian Verrall as their new Director of Engineering and Product Management, effective immediately. With over 13 years of experience in engineering and product management, Julian has successfully led design and new product development initiatives, demonstrating strong leadership and technical expertise. His extensive knowledge and strategic vision will… Read More…


Design

  • LEDVANCE: Modern High Ceiling Lighting Ideas 

    LEDVANCE: Modern High Ceiling Lighting Ideas 

    High ceilings, distinctive in contemporary architecture, create a sense of spaciousness and timeless ambiance. However, lighting these elevated spaces presents unique challenges. Whether you need a cozy light for your bedroom or a practical solution for your kitchen, Ledvance can provide inspiration and guidance to effectively illuminate your high-ceilinged space.​ High ceilings pose intricate lighting… Read More…

  • Magic Lite: How 5CCT Ultra-Thin Recessed Ceiling Lights Deliver Maximum ROI

    Magic Lite: How 5CCT Ultra-Thin Recessed Ceiling Lights Deliver Maximum ROI

    Lighting is one of the most important aspects of any commercial or residential project, yet it is often overlooked when calculating long-term return on investment (ROI). 5CCT ultra-thin recessed ceiling lights have emerged as a game-changer, offering superior efficiency, lower installation costs, and long-term financial savings for contractors, architects, and real estate developers. Unlike traditional recessed fixtures,… Read More…


New Products

  • Intermatic: RC-LRS1-WH Long-Range Wireless Switch

    Intermatic: RC-LRS1-WH Long-Range Wireless Switch

    The RC-LRS1-WH – Long-Range Wireless Switch is designed for use with Intermatic pool and spa panels, Intermatic weatherproof covers, and similar weather-rated NEMA 3R enclosures. Featuring 915 MHz spread spectrum wireless technology, the switch communicates with the companion remote control fob (sold separately) at distances up to 400 feet through metal panels, with no external… Read More…

  • Barbican: Jut Box INNI Acoustic Fixtures

    Barbican: Jut Box INNI Acoustic Fixtures

    The Acoustic Jut INNI by Barbican offers the possibility adding dimension, color, and texture to an otherwise flat and ordinary ceiling. The Acoustic Jut INNI, expands the Barbican Jut family by combining a cost-effective light engine with PET felt (including recycled content) in several shape and regress height options, providing a cost-effective option for an… Read More…