Study Results could Lead to a New Class of Materials for Making LEDs

Xianfeng Duan

 

The California NanoSystems Institute’s Xiangfeng Duan A new study by researchers from the California NanoSystems Institute at UCLA is the first demonstration of electroluminescence from multilayer molybdenum disulfide, or MoS2, a discovery that could lead to a new class of materials for making LEDs. The study, led by Xianfeng Duan, professor of chemistry and biochemistry, was published in the journal Nature Communications on July 1, 2015.

Over the last decade, advances in LED have helped to improve the performance of devices ranging from television and computer screens to flashlights. As the uses for LEDs expand, scientists continue to look for ways to increase their efficiency while simplifying how they are manufactured. In the new study, Duan and first author Dehui Li, a postdoctoral scholar in Duan’s lab, created the first multilayer molybdenum disulfide device that shows strong luminescence when electrical current is passed through it.

In its single-layer form, molybdenum disulfide is optically active, meaning that it emits light when electric current is run through it or when it is shot with a nondestructive laser. Multilayer molybdenum disulfide, by contrast, is easier and less expensive to produce, but it is not normally luminescent.

“We were trying to make a vertically stacked light-emitting device based on monolayer MoS2, but it was difficult to get the efficiency as high as we wanted,” says Duan. “On the other hand, it was rather surprising for us to discover that similar vertical devices made of multilayer MoS2 somehow showed very strong electroluminescence, which was completely unexpected since the multilayer MoS2 is generally believed to be optically inactive. So we followed this new lead to investigate the underlying mechanism and the potential of multilayer MoS2 in light-emitting devices.”

Duan and his team used a technique called electric field-induced enhancement, which relocates the electrons from a dark state to a luminescent state, thereby increasing the material’s ability to convert electrons into light particles, or photons. With this technique, the multilayer MoS2 semiconductors are at least as efficient as monolayer ones.

Duan’s team is currently moving forward to apply this approach to similar materials, including tungsten diselenide, molybdenum diselenide and tungsten disulphide, with the goal of helping to create a new generation of light-emitting devices from two-dimensional layered materials, which are less expensive and easier to use in manufacturing.

Read the article in Nature Communications www.nature.com/ncomms/2015/150701/ncomms8509/full/ncomms8509.html

 

Related Articles


Changing Scene

  • Luminis Wins Two 2024 Product Innovation Awards

    Luminis is pleased to announce its Syrios Pro family and Jaki luminaires have each received a 2024 Product Innovation Award from Architectural Products magazine. The PIA program was created to celebrate the ground-breaking products, systems, and materials that help architects achieve new levels of creativity or performance in their design. Each entry is reviewed by… Read More…

  • NEMRA Announces Jeff Bristol as Vice President of the Newly Formed NEMRA Lighting Division

    The National Electrical Manufacturers Representatives Association (NEMRA) is proud to announce the appointment of Jeff Bristol as Vice President of the newly formed NEMRA Lighting Division. Jeff Bristol most recently served as Senior Vice President of Sales & Marketing for MaxLite, where he was responsible for developing and executing sales and marketing strategies across multiple… Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • SATCO|NUVO: Lacey Collection LED Smart Color-Changing Pendants

    SATCO|NUVO: Lacey Collection LED Smart Color-Changing Pendants

    The Lacey LED pendant collection combines sophisticated design with the advanced functionality of STARFISH Smart technology. Featuring beautiful lead free bubble crystal, these fixtures create a stunning interplay of light, texture, and color. Each bubble sparkles with vibrant hues, while traditional white tones, ranging from warm to natural light, offer a more classic lighting option.… Read More…

  • Contact Delage: New Ketra Lighting by Lutron – Make Your Clients Feel the Vibe

    Contact Delage: New Ketra Lighting by Lutron – Make Your Clients Feel the Vibe

    In a world where light plays a central role in architecture and design, Ketra Lighting by Lutron redefines how we illuminate spaces and influence emotions. With its unique approach and advanced capabilities, Ketra Lighting transforms every residential or commercial project into an immersive and personalized experience. Ketra Lighting stands out with its revolutionary technology, where… Read More…