Study Shows Value of Sensor-controlled, Bi-Level Lighting

February 8, 2019

Considerable energy savings can be achieved with sensor-controlled, bi-level corridor lighting, according to results of a field demonstration led by the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute.

The field demonstration looked at sensor-controlled, bi-level corridor lighting in a multi-family apartment building. 

“Saving lighting energy in multi-family corridors is becoming more feasible,” says Jennifer Brons, who authored a report on the field demonstration. “LED luminaires can easily dim light output when corridors are vacant, rather than turning off entirely. Most importantly, the occupants had positive comments about safety and comfort with sensor-controlled, bi-level lighting.”

Dimming light output when corridors are vacant, rather than turning off entirely, is referred to as “bi-level” or “adaptive” lighting. Sensors can be mounted in each luminaire, or can be wirelessly linked to multiple luminaires. 

Project background

With support from the New York State Energy Research and Development Authority, the LRC and Taitem Engineering collaborated with Albany Housing Authority to upgrade 60 corridor lights on six floors of a below-market-rate apartment building in Albany, New York, known as Lincoln Square Two. Monitoring results from 14 other apartment buildings enabled energy savings calculations comparing market rate vs. below market rate buildings.

Lincoln Square Two is part of a complex of high-rise apartments built in the 1960s. The project involved upgrading 60 corridor lights (6 floors, 10 per floor). 

Previous lighting consisted of linear T8 fluorescent lamps4 in surface-mounted luminaires spaced typically 13 feet
(4 m) apart. Although lamps were in good working order, plastic cube louvers had yellowed with age, thus distorting colours and reducing luminaire light output. Before the retrofit, average illuminance on the floor was 106 lux (10 fc). 

For this research, each of the previous fluorescent luminaires were replaced one-for-one with LED luminaires controlled by integrated ultrasonic occupancy sensors. Luminaires were rotated to orient parallel to the corridor to improve light distribution on the walls. Each of the new luminaires was set to operate at 100% output when occupied (average 303 lux at floor level); when vacant, luminaires dimmed independently to 20% of full output. Twenty of the new luminaires were set for each of the three delay time settings: 5, 10, or 15 minutes.

Resident feedback

The LRC administered a questionnaire to compare occupant acceptance to the conventional, fixed-output fluorescent lighting in use before the retrofit. Despite the higher light levels with the new lighting, most occupants did not consider the hallways too bright after retrofit. Over three-quarters (78%) of the occupants approve of the new bi-level lighting. More of the occupants had positive ratings after retrofit than before retrofit.

The occupants also offered positive comments about the retrofit. Multiple people commented that they like how the individually controlled luminaires ramp up light output successively as they walk through the corridor. One person likes that the sensors act as a notification that others are present. Several people simply prefer having more light in the corridors, independent of sensor features. There were no negative comments about the sensors. 

Estimated annual energy use 

Energy impacts were studied for the three delay time settings. Luminaires programmed with the shortest sensor delay time (5 minutes) operated at high output for less time (22%) compared to those programmed with longer (15 minute) delay times (31%). This resulted in 14% less annual energy use for the short delay time setting compared to the long delay time setting. 

Proximity to elevator lobbies increased the amount of time luminaires were at high output, and therefore reduced energy savings in these areas. However, even in busy elevator lobbies, bi-level lighting used about half as much energy as only upgrading to fixed-output LEDs. 

The LRC calculated annual energy use for 48 luminaires comparing the previous T8 fluorescent luminaires to two conditions: LED luminaires without sensors, and bi-level lighting programmed with a 5-minute time delay. At this high-rise residential site, use of sensors to create bi-level lighting more than doubled energy savings compared to upgrading to fixed-output LEDs.

Key findings

The Lincoln Square bi-level lighting demonstration showed that

  • over three-quarters (78%) of the occupants approved of the new bi-level lighting
  • 5-minute delay time was not objectionable
  • dimming to 20% light output when vacant was not objectionable
  • use of sensors to create bi-level lighting more than doubled energy savings compared to upgrading to fixed-output LEDs
  • the lower the dim setting when vacant, the greater the energy savings due to bi-level lighting

Read the full study here.

Related Articles


Changing Scene

  • Curtis Linder Joins LightForm as Account Executive in Toronto

    LightForm is excited to announce the appointment of Curtis Linder as Account Executive for the Toronto market. Curtis brings over 15 years of extensive sales experience in the luxury furniture industry, honed during his tenure at ELTE, where he was responsible for managing the needs of over 130 Interior Design and Architecture firms. His deep… Read More…

  • Eureka Wins Multiple GRANDS PRIX DU DESIGN Awards

    Eureka is pleased to announce that it has received seven awards in the 17th edition of the GRANDS PRIX DU DESIGN Awards, all in the Product/Industrial Design/Lighting Fixture-Indoor category. Joli and Marro received GOLD CERTIFICATION, Frank, Tangram-Essential, and Tangram-Cut received SILVER CERTIFICATION, and Elke and Tangram-Tact were recognized with a BRONZE CERTIFICATION. Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • Leviton Launches 400 Amp Load Center to Meet Increasing Residential Electrical Needs

    Leviton Launches 400 Amp Load Center to Meet Increasing Residential Electrical Needs

    Leviton recently announced the launch of its first-ever 400 Amp Meter Main Load Center, along with a 300 Amp model. This innovative addition to Leviton’s product line is designed to meet the growing demand for larger electrical service in large-scale residential applications, highly electrified homes, and future-proofing installations. With this new offering, Leviton continues to… Read More…

  • MaxLite: EasyRF – Simple Room-Based Wireless Lighting Controls

    MaxLite: EasyRF – Simple Room-Based Wireless Lighting Controls

    MaxLite is proud to announce the launch of EasyRF, an innovative room-based wireless lighting control system that expands the company’s c-Max Lighting Controls platform. EasyRF represents a user-friendly and cost-effective solution designed to seamlessly integrate luminaire level lighting controls (LLLC) for both new construction and retrofit projects. This innovative system is designed to create groupable wireless… Read More…