“Quantum Dot” Lighting Technology Takes Forward Leap

April 17, 2018

Steve Lundeberg

A “superacid” much stronger than automobile battery acid has enabled a key advance toward a new generation of LED lighting that’s safer, less expensive and more user friendly.

Researchers at Oregon State University used the organic superacid to improve the performance of “quantum dots” made from copper indium disulfide, a compound much less toxic than the lead or cadmium that typically serve as the basis for the light-emitting nanocrystals.

Used in optics and electronics, quantum dots have been around for some time. But they can be expensive to manufacture as well as unsafe for some potential applications, including biomedical imaging, because of lead and cadmium’s toxicity.

“There are a variety of products and technologies that quantum dots can be applied to, but for mass consumer use, possibly the most important is improved LED lighting,” says Greg Herman, professor of chemical engineering in the OSU College of Engineering. “And there are now light-emitting nanocrystal TVs on the market that use quantum dots.”

Manufacturing techniques being developed at Oregon State are dealing with the toxicity issue and should scale up to large volumes for low-cost commercial applications. They also will provide new ways to offer the precision needed for better colour control; the size and composition of the particle is what determines the colour of the light.

In this latest study, published in Materials Letters,* researchers created a superacid treatment that improves the photoluminescence of the non-toxic, non-heavy metal quantum dots to the point of being comparable with the best-performing quantum dot material, cadmium selenide.

“The light emission from the superacid-treated dots is much better,” says Herman, the study’s corresponding author. “There are still issues that need to be addressed, but what we’ve shown with this is the ability to improve the lifetime of the quantum dots, and much higher quantum efficiencies. And because these quantum dots are non-toxic, the potential exists for biomedical applications as well.”

A cancer patient, for example, could ingest highly stable dots that would collect at tumour sites to allow imaging.

“That’s another reason we’re working with copper and indium,” he said. “You don’t want people to ingest cadmium or lead.”

The National Science Foundation and Sharp Laboratories of America supported this research. Collaborators included then-OSU graduate students Yagenetfere Alemu and Gustavo Albuquerque.

Earlier quantum dot advances at Oregon State involved the development of a “continuous flow” chemical reactor, as well as microwave heating technology that’s conceptually similar to the ovens owned by most U.S. households.

The continuous flow system is fast and energy efficient and will cut manufacturing costs. And the microwave technology allows for precise control of the heat needed during the manufacturing process, translating into nanoparticles that are the size, shape and composition they need to be.

Steve Lundeberg reports on science news for Oregon State University. This article was first published online by OSU: http://today.oregonstate.edu/news/‘quantum-dot’-lighting-technology-takes-forward-leap-thanks-new-superacid-treatment

Photo source: Wikipedia; https://en.wikipedia.org/wiki/Quantum_dot_display

* Yagenetfere A. Alemu, Gustavo H. Albuquerque, Gregory S.Herman, “Enhanced photoluminescence from CuInS2/ZnS quantum dots: Organic superacid passivation,” Materials Letters, Volume 219, 15 May 2018, Pages 178-181, www.sciencedirect.com/science/article/pii/S0167577X18303173

Related Articles


Changing Scene

  • LightForm Appoints Christine Vieira as New GTA Team Lead

    LightForm is delighted to announce the promotion of Christine Vieira to the position of GTA Team Lead. Over her six-year tenure with LightForm, Christine has demonstrated exceptional leadership and deep product knowledge, becoming a vital asset to both the company’s customers and team members. Her ability to effectively convey the unique stories of it’s core… Read More…

  • Dainolite Expands Reach with New Lighting Agency Appointments

    Dainolite is thrilled to announce the appointment of several new commercial lighting agencies in the Ontario region. This strategic move is aimed at expanding the company’s market presence and enhancing it’s ability to deliver innovative decorative lighting solutions to the commercial industry. The new agencies, selected for their extensive industry expertise and strong market presence,… Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • Magic Lite: Tri-Proof Lights

    Magic Lite: Tri-Proof Lights

    Tri-Proof Lights are a durable lighting solution that can replace traditional linear fluorescent luminaires. Tri-Proof Lights are designed for a variety of applications requiring, dust-, moisture- and impact-resistance. Suitable environments such as corridors, stairwells, warehouses, parking garages and car washes allows this versatile fixture in a variety of applications. Read More…

  • Leviton: Decora Smart ELV/LED Phase Selectable Dimmer, Wi-Fi 2nd Gen, Neutral Wire Required

    Leviton: Decora Smart ELV/LED Phase Selectable Dimmer, Wi-Fi 2nd Gen, Neutral Wire Required

    Introducing Leviton’s Decora Smart Electronic Low Voltage/LED Phase Selectable Dimmer Switch with Wi-Fi 2nd Gen., for 600VA ELV, 300W LED, 300W CFL, and 600W Incandescent/Halogen lights, with wallplate included. These switches come in white. Read More…