How to Build a Control System

Control System

Nov 3, 2020

By Jeremy Day

Building a control system for a modern lighting installation can seem like an impossibly complex task. To simplify it, a systematic approach to understanding the needs of the design, facility, and user can be employed. In this white paper, we aim to define the questions one must answer to construct an appropriate control system.

First, and perhaps counterintuitively, one must start with the control narrative. A lighting programming and control narrative is a document that is essential to coordinate the design/construction process with a fully realized final architectural product. It defines how lighting will integrate into the space and, ultimately, how humans will interact with that same space. With the direction of the narrative, the necessary functionality of the control system can be defined. Is the intent for lights to automatically turn on and off with an astronomical time clock? Should lights be dimmed via daylight harvesting? What kind of shows or effects are desired? The answers to these questions will directly determine the size and scale of the control system. Without this narrative, assumptions will have to be made. The balancing act will be between providing a highly flexible control system and a system that is adequately capable yet cost effective.

Questions to ask yourself

1. What is the standard order of operations for a normal day?

2. What special events or holidays need a special program or scene?

3. What happens automatically vs. what happens via manual intervention?

Second, the number of controllable zones must be determined. An outdoor façade installation may have a floodlights-only zone, or it could also include linear grazing fixtures as well as direct view elements. Each of these zones will need to be controlled independently, and the control system must be sized appropriately. 

Questions to ask yourself

4. How many individually controllable zones are there (e.g. downlights, cove, accent, indirect, colour per room)?

Of note, to create a dynamic lighting system, the number of channels needed to put the system together must be well understood. A channel is defined as a single controlled attribute. For simple dimming only lights, one channel would be needed to control that dimmed intensity. For tunable white lights, two or three channels would be needed to adjust intensity and colour temperature, depending on the exact configuration of that fixture. A colour changing RGBW light would most likely need four channels, one for each Red, Green, Blue, and White control.

A simple system composed of only a white light fixture with a dimmable, static colour temperature will need only one DMX channel per zone. A more complex system, such as a linear run of colour-changing RGBW fixtures, could potentially need four channels per foot (or even eight per foot in exceptional circumstances). Of course, if the control narrative is clearly defined as “this linear run will only fade from Colour 1 to Colour 2 in unison,” that would eliminate the need for individually addressed fixtures and could significantly reduce the cost of the control system.

Figure 1Figure 2

Another consideration is requirements for Input and Output (I/O) signalling and integration. Some common examples of these I/Os are:

• fire alarms
• emergency conditions
• building automation systems
• occupancy and daylight sensors
• shades
• wind or other atmospheric sensors
• A/V integration

The control narrative will describe the necessary interactions, but the physical locations and quantities of I/O will determine the number of interfaces in the control system. A system composed of only a few lights might still require a larger more sophisticated control system based purely on the complexity of the I/O needs.

Figure 3

Questions to ask yourself

5. How many of each control I/O are required and at what locations?

The next key component to consider is user interfaces: How will the users interact with the system, turn lights on and off, raise and lower, change colours, advance scenes, etc.? Where will these interactions take place? You might need a keypad at every office and door, but what about the exterior lights? Where will they be controlled? In addition to physical control stations like keypads and touchscreens, virtual control like web pages and smart devices need to be considered and allotted for. 

Questions to ask yourself

6. List each user interface, including keypads, touchscreens, web access terminals, smart devices.

Figure 4

Finally, a consideration to make is whether to base a control system off DMX/RDM (a digital, daisy chained system for smaller systems) or Ethernet (a highly flexible and scalable system for projects of all sizes and complexities). Below are some key advantages of each protocol.

[Figure 5

Now that the requirements of the control system have been defined, the type, scale, and specifics of the control system can be chosen. Often tiers exist in control systems, sometimes defined by the number of universes, user interfaces, or I/O triggering. One specific requirement may bump the system up into a higher tier. Having a complete understanding of the scope of the control system will ensure that all requirements are covered by the capabilities of the control system. Lumenpulse sales engineers are experienced in the consultation and execution of control systems of all sizes and are available to consult on the needs, options, and budgets of this critical element of all lighting systems.

Understanding of the desired functionality of the lighting system will help right-size the control system to meet all needs without overspending and overcomplicating a project. Control systems come in many shapes and sizes, with trade-offs in capabilities, cost, and complexity. Lumenpulse is here to help clients balance these elements and choose the correct system at the right price and feature set.

Jeremy Day is a Lumenpulse Application Engineering Director. This article was first published online by Lumenpulse: www.lumenpulse.com/knowledge/how-to-build-a-control-system

Related Articles


Changing Scene

  • Leviton Achieves 29% Decrease in Overall GHG Emissions from 2021 to 2023

    Leviton recently announced that it achieved a 29% drop in overall greenhouse gas (GHG) emissions from the 2021 baseline year, a major step towards the goal of becoming carbon neutral company-wide by the year 2030 with their CN2030 program. Through on-site renewable energy generation, accelerated energy efficiency efforts, moving to renewable and clean energy providers,… Read More…

  • LEDVANCE Canada Welcomes Gary Repko as Sr. Sales Representative in Central Region

    Recently, LEDVANCE Canada was delighted to welcome Gary Repko as its Sr. Sales Representative for the central region of Canada. Linda Conejo, a Regional Sales Manager for LEDVANCE Canada, stated, “Gary has 12+ years industry experience and brings a wealth of knowledge having worked with engineers, contractors and distributors. We are excited that he has… Read More…


Design

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…

  • Lumentruss Case Study: The Honeyrose Hotel’s Beautiful Redesign

    Lumentruss Case Study: The Honeyrose Hotel’s Beautiful Redesign

    May 30, 2024 A unique example of intimate spaces created using Lumentruss products at the Honeyrose Hotel. HONEYROSE Hotel, Montreal, a Tribute Portfolio Hotel. The beautifully inspired Art Deco boutique hotel located in the heart of Montreal is an exemplary demonstration of integrating layers of light into the architectural design to bring the architecture to… Read More…


New Products

  • WaveLinx LITE Node from Cooper Lighting Solutions

    WaveLinx LITE Node from Cooper Lighting Solutions

    The WaveLinx LITE Node (OEM-WLN) is a wireless to 0-10V control module designed to be integrated into the luminaire. The LITE Node offers two continuous 0-10V output channels that can be used to control dim-to-off 0-10V LED drivers with auxiliary power. The device has a built-in 802.15.1 radio (Bluetooth) that is used to communicate with other WaveLinx… Read More…

  • Peerless Electric: Peerlux Series ECR-G Luminaire

    Peerless Electric: Peerlux Series ECR-G Luminaire

    Introducing Peerless Electric’s ECR-G luminaire, part of the Peerlux Series, a germicidal luminaire for suspended mounting with aircraft cables. Designed to help clean the air of bacteria, fungi, their spores and inactivating viruses by destroying their ability to replicate. A stylish linear fixture that provides indirect UVc disinfection. Read More…