Robotic Lighting System Gives Surgeons Clearer View in Operating Theatres

March 8, 2017

A team at the Research Centre for Biomedical Engineering (CREB) of the Universitat Politècnica de Catalunya (UPC) has developed an innovative smart lighting system for operating theatres. Equipped with LED luminaires, the new system allows users to efficiently control the direction and intensity of the light beam projected onto the surgical field as required during an operation. It has generated two patents and is now at the stage of being placed on the market.

Lighting in hospital operating theatres plays an important role in any surgical procedure. Operating lights must be directed toward various points at different intensities to provide an optimal view. They must also adapt to the movements of the surgical team and of the tools used in each operation.

“An operating theatre is a very tricky space to light. You have various people moving around the patient, equipment suspended from the ceiling, moments when a very powerful light needs to be directed at a specific area, and other points when the lighting must be dimmed and come from a different direction to avoid having the surgeon cast a shadow,” says Alícia Casals, the researcher who heads the Robotics and Vision Area of CREB, a research centre that is part of the Innovation and Technology Centre (CIT), and a professor at the UPC.

With the aim of improving lighting during surgical procedures, Casals has led a team of researchers at the UPC’s Research Centre for Biomedical Engineering to develop a robotic system for operating theatres that harnesses the latest technology and can incorporate laminar flow diffusers. The system generates an airflow that sweeps pathogens and other particles floating in the air down to floor level. It also features a smart system, monitored and controlled by the surgeon, that improves the precision and orientation of lighting.

The system consists of an overhead light and two oblique light sources. Thanks to the way they are positioned, the lights eliminate shadows in the working area while also minimizing infrared and ultraviolet radiation. Other advantages over traditional lamps are a reduction in the risk of hospital infections, higher energy efficiency, and a significant improvement in working conditions for medical staff.

The lighting system, which has already generated two patents and is at the stage of being placed on the market, could have additional uses in spaces where light and airflow need to be controlled, including delivery rooms and other facilities, and even non-medical settings.

From first prototype to reality

CREB researchers first began developing the system 20 years ago, after Dr Enric Laporte, a surgeon at the Parc Taulí Health Corporation Consortium (CCSPT) in Sabadell, contacted the UPC research centre.

The CREB, which conducts research in several areas, including robotics, designed an initial prototype for a ceiling-mounted platform with a series of halogen lamps that could provide selective illumination. However, because light was only projected vertically, the first model did not solve the problem of lighting angles.

Working in collaboration with professionals at the CCSPT, UPC researchers made improvements to the initial model. This led to a second prototype which incorporated rows of LED lights that can turn in different directions to illuminate the entire length and breadth of a patient’s body. The surgeon used arm movements to activate a remote control and illuminate specific areas as required. The first patent was registered based on this prototype.

Progressive improvements have been made to the new system. One is the incorporation of next-generation LED lights that are smaller and more powerful (with an intensity of up to 160,000 lux). The guidance system has also been improved, and the surgeon no longer needs to point at the ceiling to activate lights. He or she simply aims a handheld controller at the area of the patient’s body that needs to be illuminated and the system provides light at the required intensity and from the appropriate angle.

After testing the system and improving all its components, the developers set up a consortium with Luxiona (a company that specialises in industrial lighting) and Telstar (a supplier of technological equipment for the biomedical sector) to place the product on the market. The system has been presented at several international trade fairs, including Light Middle East, Dubai (October 31 to November 2 in the United Arab Emirates) and ArabHealth (an event that focuses on the health sector, held in Dubai in late January). It is now at the stage of being placed on the market and has been installed in three hospitals.

 

Related Articles


Changing Scene

  • CSC LED Announces the Appointment of Patrick Ndlovu as Branch Manager (AB)

    CSC LED is happy to announce that Patrick Ndlovu has joined their growing team as Branch Manager in Calgary, Alberta. With extensive experience as a journeyman electrician and a strong background in sales, Patrick brings together technical expertise and a deep understanding of market dynamics. His practical experience in the field, combined with his sales… Read More…

  • Maxlite Expands c-Max Network Partners Ecosystem With Casambi Technologies

    MaxLite is pleased to announce the recent expansion of its c-Max Network Partners ecosystem with the addition of Casambi Technologies, a provider of wireless lighting control systems. This strategic partnership further enhances MaxLite’s c-Max Lighting Controls platform, offering customers an even wider range of advanced wireless control options. The collaboration with Casambi strengthens MaxLite’s commitment… Read More…


Design

  • Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    Project Story: Sainte-Thérèse High School Outdoor Lighting Upgrade

    August 6, 2024 Built in 1980, the building that houses Sainte-Thérèse high school, in Quebec Canada, was looking a little worse for the wear. Renovation work began with two major projects: introducing a multidisciplinary sports centre, as well as redesigning the parking lots.  The employee and visitor parking lots were completely reconfigured during phase 1… Read More…

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…


New Products

  • RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    RENO Lighting Unveils AIM Series Architectural Indirect Curved Panel

    November 22, 2024 RENO Lighting is proud to announce the launch of the AIM Series Architectural Indirect Curved Panel. This innovative luminaire combines sleek design with advanced technology to deliver superior lighting performance for modern architectural spaces. The AIM Series pays homage to traditional edge-lit flat panels, featuring a slim profile ideal for low plenum… Read More…

  • RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    RENO Lighting Launches the First New Long Detection Range (50ft) PIR Sensor

    November 22, 2024 RENO Lighting is proud to announce the launch of its new PIR (Passive Infrared) Sensor (R74004), designed to enhance lighting control on LED fixtures such as high bays and vapor tight fixtures with an impressive 50-foot detection range that is designed for installation heights of up to 50ft. This fixture-mounted sensor is the… Read More…