Study Results could Lead to a New Class of Materials for Making LEDs

Xianfeng Duan

 

The California NanoSystems Institute’s Xiangfeng Duan A new study by researchers from the California NanoSystems Institute at UCLA is the first demonstration of electroluminescence from multilayer molybdenum disulfide, or MoS2, a discovery that could lead to a new class of materials for making LEDs. The study, led by Xianfeng Duan, professor of chemistry and biochemistry, was published in the journal Nature Communications on July 1, 2015.

Over the last decade, advances in LED have helped to improve the performance of devices ranging from television and computer screens to flashlights. As the uses for LEDs expand, scientists continue to look for ways to increase their efficiency while simplifying how they are manufactured. In the new study, Duan and first author Dehui Li, a postdoctoral scholar in Duan’s lab, created the first multilayer molybdenum disulfide device that shows strong luminescence when electrical current is passed through it.

In its single-layer form, molybdenum disulfide is optically active, meaning that it emits light when electric current is run through it or when it is shot with a nondestructive laser. Multilayer molybdenum disulfide, by contrast, is easier and less expensive to produce, but it is not normally luminescent.

“We were trying to make a vertically stacked light-emitting device based on monolayer MoS2, but it was difficult to get the efficiency as high as we wanted,” says Duan. “On the other hand, it was rather surprising for us to discover that similar vertical devices made of multilayer MoS2 somehow showed very strong electroluminescence, which was completely unexpected since the multilayer MoS2 is generally believed to be optically inactive. So we followed this new lead to investigate the underlying mechanism and the potential of multilayer MoS2 in light-emitting devices.”

Duan and his team used a technique called electric field-induced enhancement, which relocates the electrons from a dark state to a luminescent state, thereby increasing the material’s ability to convert electrons into light particles, or photons. With this technique, the multilayer MoS2 semiconductors are at least as efficient as monolayer ones.

Duan’s team is currently moving forward to apply this approach to similar materials, including tungsten diselenide, molybdenum diselenide and tungsten disulphide, with the goal of helping to create a new generation of light-emitting devices from two-dimensional layered materials, which are less expensive and easier to use in manufacturing.

Read the article in Nature Communications www.nature.com/ncomms/2015/150701/ncomms8509/full/ncomms8509.html

 

Related Articles


Changing Scene

  • SLS Group Industries Announces 3 New Ownership Roles

    SLS Group Industries Announces 3 New Ownership Roles

    In a bold move that underscores the power of experience and dedication, three long-term employees: Ryan Cattermole, Nitin Naidu and Douglas McDonald, have ascended to ownership roles at SLS Group Industries Inc., a major lighting sales agency operating in British Columbia, Canada. Ryan Cattermole, a Red Seal certified professional, joined SLS in June 2017, bringing… Read More…

  • Leviton| Viscor Announces Julian Verrall as New Director of Engineering & Product Management

    Leviton|Viscor Announces Julian Verrall as New Director of Engineering & Product Management

    Leviton|Viscor is pleased to announce the appointment of Julian Verrall as their new Director of Engineering and Product Management, effective immediately. With over 13 years of experience in engineering and product management, Julian has successfully led design and new product development initiatives, demonstrating strong leadership and technical expertise. His extensive knowledge and strategic vision will… Read More…


Design

  • Zaneen: Sign Drum – Blend of Sophistication & High-Performance Lighting

    Zaneen: Sign Drum – Blend of Sophistication & High-Performance Lighting

    When it comes to modern lighting, striking the perfect balance between aesthetic appeal and functionality is key. Sign Drum is the latest in sophisticated design and advanced lighting technology. Whether you’re designing an inspiring office, an inviting hospitality venue, or a cozy residential space, Sign Drum delivers style and performance in equal measure. The Sign Drum collection is… Read More…

  • LEDVANCE: Modern High Ceiling Lighting Ideas 

    LEDVANCE: Modern High Ceiling Lighting Ideas 

    High ceilings, distinctive in contemporary architecture, create a sense of spaciousness and timeless ambiance. However, lighting these elevated spaces presents unique challenges. Whether you need a cozy light for your bedroom or a practical solution for your kitchen, Ledvance can provide inspiration and guidance to effectively illuminate your high-ceilinged space.​ High ceilings pose intricate lighting… Read More…


New Products

  • STANPRO: KOLIKA RING – Architectural LED Luminaire

    STANPRO: KOLIKA RING – Architectural LED Luminaire

    Create an exceptional space with the well thought out features the KOLIKA RING has to offer by enhancing the overall appearance, functionality and ambiance in a space. The sleek, modern design of the fixture allows to adjust wattage and color temperatures, as well as the direct and indirect light ratio, providing an elevated aesthetic that… Read More…

  • Liteline: KLICK SPOT2 Framing Projector

    Liteline: KLICK SPOT2 Framing Projector

    The KLICK SPOT 2 Framing Projector is a powerful track fixture designed for precise, adjustable illumination to highlight specific objects or areas without spill light. Delivering increased lumen output, this luminaire seamlessly integrates into the KLICK track system, combining performance with aesthetic appeal. The KLICK SPOT2 is designed for applications that require precise illumination, so… Read More…