How Many Studies Does It Take to Change a Lightbulb – Part 3 – Some Roads are Shinier than Others

May 17, 2024

By Noah Sabatier

Part 3 of “How Many Studies Does It Take to Change a Lightbulb” emphasizes the often-overlooked impact of weather and the spectral reflectance of surfaces on lighting selection, highlighting the importance of considering these factors for optimal lighting design, particularly in outdoor environments.

If you have made it to part 3 of this article series, congratulations! You have now considered more evidence on real-world visual performance than those who decided to install white LED streetlights in your community. If you haven’t, please take a moment to catch up on Part 1 and Part 2 at their respective links. Today we will examine two more factors in lighting selection. Weather and the spectral reflectance of surfaces pose often-overlooked challenges to identifying ideal lighting designs.

In the first part, we learned the importance of visual adaptation to light. Visual adaptation relies on the luminance of the environment, something that varies with conditions. The luminance of any surface is based on its spectral reflectance properties. When a solid surface is illuminated, some of that light is absorbed while the rest is reflected. Not only do these reflectance values depend on the surface material, but they also vary with the wavelength(s) of light.

Spectral reflectance of 22 different pavement samples. Many samples see reflectance doubled under amber light compared to violet.
Spectral reflectance of 22 different pavement samples. Many samples see reflectance doubled under amber light compared to violet.

Spectral reflectance values are important for understanding two factors of lighting quality that often get left out of lighting guidance. Pavement surfaces such as roadways, parking lots and footpaths have a spectral reflectance that increases with wavelength. This means that, as the wavelength of light increases, more of the light is reflected to produce useful luminance. For example, on an asphalt test surface, 5.38% of light at 450 nanometer (nm) (ie. blue) is reflected. For 580 nm light (yellow), this reflectance value increases to 7.71%. When illuminating a paved outdoor area, less light is needed to produce the same pavement luminance when longer spectrums such as yellow are used.

A much greater difference in spectral reflectance is seen in regions that experience snowy winters. Pavement samples generally offer a spectral reflectance of 5-15% based on material properties and light wavelength. In comparison, the spectral reflectance of fresh snow is generally upwards of 95%. Ice has a lower reflectance of anywhere between 2% and 60+%. These values are deceptively low however, as the mirror-like surfaces often formed by ice produce specular reflections. Rather than light being reflected in a diffuse manner, specular reflection sends light in a single direction. Specular reflection is responsible for seeing an inverted ‘image’ of a light source in a puddle or patch of ice. This image-like reflection results in a luminance hot spot, similar to viewing the light source directly.

How Many Studies Does It Take to Change a Lightbulb – Part 3 – Some Roads are Shinier than Others

The image above shows 3 photographs taken at identical exposure settings in the same location. The photographs have been converted into a scale of relative pixel luminance. The left photo shows regular, dry road conditions. The center photo is taken shortly after rainfall and the right photo shows compacted snow, taken days after a blizzard. The wet road shows a great deal of specular reflectance, resulting in a higher luminance contrast on the surface. Certain regions, such as the puddle, reflect a luminance value close to the light source itself. The winter scene shows greatly increased luminance not only on the road but also on lawns, rooftops and the sky.

Rate of light scattering by wavelength under Rayleigh Scattering
Rate of light scattering by wavelength under Rayleigh scattering.

A more universal issue for outdoor lighting is that of atmospheric moisture. Water particles fall under Rayleigh scattering, a physics principle that applies to particles smaller than the wavelength of light. The percentage of light affected by Rayleigh scattering is dependent on wavelength, with shorter wavelengths being scattered at higher rates. This can often be seen in foggy conditions and is the reason that fog lights are generally yellow, a relatively long wavelength of visible light. Regions subject to fog will become more hazardous if the wrong spectrum of light is used.

Note the increased scattering of blue-rich white light compared to the yellow light. In more intense weather conditions this wall of scattered light can become thick enough to completely block vision.
Note the increased scattering of blue-rich white light compared to the yellow light. In more intense weather conditions this wall of scattered light can become thick enough to completely block vision.

Interactions between light and the environment play a crucial role in implementing quality lighting. Lighting designers must pay attention to the spectral reflectance of the surfaces they’re illuminating, especially if they are using illuminance rather than luminance.

Since illuminance is merely a measure of light landing on a surface, it does not account for varying levels of reflectance. This can cause differences in pavement luminance for different spectrums of light, even if lux levels are the same. It is also important for designers to consider local weather patterns in their region. Surfaces subject to regular rain will experience higher levels of luminance contrast while snowy regions will see an overall increase to luminance levels.

Noah Sabatier is a photographer and lighting researcher that is dedicated to advocating for better outdoor lighting. Noah has spent the past 5 years living with a night shift sleep schedule, during this time he realized that the streetlights in his city were far from optimal – and recent changes had only made them worse. He has spent the past 2 years extensively reviewing scientific literature and technical documents alongside others advocating for better lighting. Noah is now working to raise awareness of common misconceptions that lead to bad lighting and the better practices needed to solve this problem.

Reach him at: noahsabatierphoto@gmail.com

Works Cited

Preciado O, Manzano E. Spectral characteristics of road surfaces and eye transmittance: Effects on energy efficiency of road lighting at mesopic levels. Lighting Research & Technology. 2018;50(6):842-861. doi:10.1177/1477153517718227

John Hopkins University Spectral Reflectance Library

Lichtverschmutzung messen & Messgeräte zur Messung/Einschätzung (paten-der-nacht.de)

https://skyandtelescope.org/astronomy-resources/transparency-and-atmospheric-extinction

A. J. Cox, Alan J. DeWeerd, and Jennifer Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections”, American Journal of Physics 70, 620-625 (2002) https://aapt.scitation.org/doi/10.1119/1.1466815

Related Articles

Part 1: How Many Studies Does it Take to Change a Lightbulb?

How Many Studies Does it Take to Change a Lightbulb? – Part 2 – We (hopefully) Look Where We’re Going – Lighting Design & Specification (lightingdesignandspecification.ca)

Related Articles


Changing Scene

  • Leviton Achieves 29% Decrease in Overall GHG Emissions from 2021 to 2023

    Leviton recently announced that it achieved a 29% drop in overall greenhouse gas (GHG) emissions from the 2021 baseline year, a major step towards the goal of becoming carbon neutral company-wide by the year 2030 with their CN2030 program. Through on-site renewable energy generation, accelerated energy efficiency efforts, moving to renewable and clean energy providers,… Read More…

  • LEDVANCE Canada Welcomes Gary Repko as Sr. Sales Representative in Central Region

    Recently, LEDVANCE Canada was delighted to welcome Gary Repko as its Sr. Sales Representative for the central region of Canada. Linda Conejo, a Regional Sales Manager for LEDVANCE Canada, stated, “Gary has 12+ years industry experience and brings a wealth of knowledge having worked with engineers, contractors and distributors. We are excited that he has… Read More…


Design

  • Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    Resilience Illuminated: Reviving Westminster Pier Park After Devastating Fire

    In September 2020, the picturesque city of New Westminster near Vancouver in British Columbia suffered a devastating setback when an intentionally set fire destroyed much of the city’s waterfront park, including its urban beach, sand volleyball courts, and iconic art installation known as Wow Westminster. The fire, which burned for ten days before firefighters could… Read More…

  • Lumentruss Case Study: The Honeyrose Hotel’s Beautiful Redesign

    Lumentruss Case Study: The Honeyrose Hotel’s Beautiful Redesign

    May 30, 2024 A unique example of intimate spaces created using Lumentruss products at the Honeyrose Hotel. HONEYROSE Hotel, Montreal, a Tribute Portfolio Hotel. The beautifully inspired Art Deco boutique hotel located in the heart of Montreal is an exemplary demonstration of integrating layers of light into the architectural design to bring the architecture to… Read More…


New Products

  • WaveLinx LITE Node from Cooper Lighting Solutions

    WaveLinx LITE Node from Cooper Lighting Solutions

    The WaveLinx LITE Node (OEM-WLN) is a wireless to 0-10V control module designed to be integrated into the luminaire. The LITE Node offers two continuous 0-10V output channels that can be used to control dim-to-off 0-10V LED drivers with auxiliary power. The device has a built-in 802.15.1 radio (Bluetooth) that is used to communicate with other WaveLinx… Read More…

  • Peerless Electric: Peerlux Series ECR-G Luminaire

    Peerless Electric: Peerlux Series ECR-G Luminaire

    Introducing Peerless Electric’s ECR-G luminaire, part of the Peerlux Series, a germicidal luminaire for suspended mounting with aircraft cables. Designed to help clean the air of bacteria, fungi, their spores and inactivating viruses by destroying their ability to replicate. A stylish linear fixture that provides indirect UVc disinfection. Read More…